Semi-Supervised Learning
Data yang diolah menggunakan data berlabel dan tidak berlabel. Biasanya digunakan dengan metode klasifikasi, regresi, dan prediksi. Contoh machine learning jenis ini adalah proses identifikasi wajah seseorang pada webcam atau kamera smartphone.
Mengenal Machine Learning
Saatnya kenalan sama machine learning! Kamu bakal mendapatkan informasi mengenai pengertian pembelajaran mesin, sejarah dan contoh machine learning. Simak baik-baik ya!
Contoh Machine Learning Adalah:
Penerapan machine learning tidak hanya bisa diterapkan di sektor teknologi saja, tapi bervariasi di berbagai sektor industri. Bahkan, perkembangan machine learning telah mengubah berbagai industri untuk menemukan pola dalam data besar untuk membuat keputusan dan prediksi berdasarkan hasil analisis data. Berikut contoh penerapan machine learning dalam berbagai sektor:
Penerapan machine learning di industri kesehatan digunakan untuk mendeteksi pola yang terkait dengan kondisi kesehatan atau penyakit dengan mempelajari ribuan catatan perawatan kesehatan dan data pasien. Selain itu, machine learning juga bisa membantu mendeteksi berbagai penyakit yang akan datang. Bahkan, algoritma machine learning juga bisa diterapkan di berbagai macam perangkat pembantu kesehatan seperti mengukur kadar oksigen, detak jantung pasien, hingga memberikan notifikasi kepada dokter apabila ada masalah yang terjadi pada pasien secara real time.
Machine Learning dan Deep Learning: Meningkatkan Kemampuan Komputasi dan Analisis Data
Di era transformasi digital, peran teknologi Machine Learning (ML) dan Deep Learning (DL) semakin vital dalam meningkatkan kemampuan komputasi dan analisis data. Sebagai perusahaan teknologi masa depan, Puskomedia menyadari pentingnya teknologi ini dan terus menghadirkan berbagai solusi inovatif untuk memenuhi kebutuhan masyarakat akan infrastruktur digital.
Artikel ini akan mengupas perkembangan terkini ML dan DL, sehingga pembaca dapat memahami cara kerja teknologi ini dan memanfaatkannya dalam kehidupan sehari-hari. Bagi Puskomedia, kunci kemajuan teknologi terletak pada pemahaman dan pemanfaatan yang optimal. Dengan memahami ML dan DL, kita dapat membuka pintu inovasi tanpa batas.
Rekomendasi Tempat Belajar Machine Learning dengan Mentor Expert
Jika kamu ingin mempelajari lebih banyak mengenai machine learning, kamu bisa belajar di Bootcamp Data Science Digital Skola. Kelas data science Digital Skola cocok untuk pemula untuk mempersiapkan skill dan portofolio agar lebih siap kerja. Berikut bocoran beberapa materi yang akan diajarkan:
Tidak hanya belajar hardskill, kamu juga akan dibantu mengasah softskill, membangun portofolio, membentuk professional branding hingga mendapatkan bantuan penyaluran kerja. Cari tahu info lengkapnya dengan klik button di bawah ini!
Machine learning merupakan pembelajaran mesin yang mempelajari beberapa hal di dalamnya seperti algoritma, ilmu statistik, dan lainnya. Machine learning merupakan teknologi bagian dari Artificial Intelligence. Ketika seseorang melakukan proses pengolahan data, sebagian besar orang membutuhkan algoritma machine learning untuk menyelesaikan atau mencari solusi dari permasalahan data yang ada. Algoritma machine learning pun sangat beragam dan digunakan sesuai dengan masalah data yang sesuai.
Algoritma sendiri merupakan suatu proses langkah demi langkah yang tersusun untuk menyelesaikan permasalahan. Algoritma machine learning sendiri sangat beragam dan sudah sering digunakan untuk menyelesaikan permasalahan data dalam berbagai bidang seperti kesehatan, pendidikan, bisnis, keuangan, dan masih banyak lainnya. Kira-kira apa saja ya algoritma machine learning yang cukup sering digunakan dan bagaimana cara kerja machine learning? Yuk, simak artikel berikut ini!
Naive Bayes merupakan salah satu algoritma supervised learning yang sederhana dan cukup sering digunakan. Algoritma ini menggunakan dasar Teori Bayes di dalamnya. Algoritma ini memiliki data training (data yang sudah terdapat label kelas) dan data testing (data yang belum memiliki label kelas). Algoritma Naive Bayes bekerja dengan cara memaksimalkan nilai suatu kelas. Kelas yang memiliki probabilitas tertinggi akan masuk ke dalam salah satu dari label-label yang tersedia.
Baca juga : 3 Jenis Algoritma Machine Learning yang Dapat Digunakan di Dunia Perbankan
Jika pada algoritma supervised learning salah satu tujuan kita adalah untuk mengetahui label kelas pada data, maka pada unsupervised learning tidak berlaku demikian. K-Means merupakan salah satu algoritma supervised learning yang mana cara kerjanya adalah mengklaster atau mengelompokkan data sesuai dengan karakteristik atau kemiripan data menjadi beberapa klaster sesuai dengan nilai k yang telah ditentukan. Pada algoritma ini dibutuhkan centroid atau nilai pusat serta menghitung jarak kedekatan data dengan centroid. Algoritma ini dilakukan secara berulang sampai tidak ada perubahan anggota dalam masing-masing kelompok.
KNN atau K-Nearest Neighbour merupakan salah satu algoritma supervised learning yang mengklasifikasikan atau mengelompokkan data ke dalam beberapa kelompok berdasarkan kemiripan sifat dari data. Algoritma ini hampir mirip dengan algoritma K-Means, yang membedakan adalah pada K-Means melakukan proses clustering sedangkan pada KNN melakukan proses klasifikasi. Terkadang orang menyebut algoritma ini dengan sebutan algoritma malas dikarenakan pada algoritma ini tidak mempelajari cara mengkategorikan data akan tetapi hanya mengingat data yang sudah ada.
Industri Transportasi dan Otomotif
Contoh machine learning pada industri transportasi dan otomotif adalah mobil dengan sistem berbasis artificial intelligence yang bisa memberi tahu pengemudi mengenai kerusakan suku cadang, petunjuk dan rute arah mengemudi, pencegahan kecelakaan hingga berbagai kondisi lainnya secara akurat.
Penerapan machine learning di industri keuangan biasanya digunakan untuk menganalisa kumpulan data dalam waktu yang relatif singkat untuk membuat proses transaksi lebih aman dan terjamin. Menggunakan machine learning juga pengelolaan keuangan bisa lebih efektif dan efisien.
Industri pertanian menjadi contoh machine learning yang paling banyak membawa manfaat. Dengan adanya machine learning, berbagai aspek di bidang pertanian bisa dioptimalkan mulai dari mendeteksi penyakit dan gulma, memprediksi kualitas dan hasil tanaman, hingga prediksi terkait produksi tanaman.
Belajar Workflow Machine Learning
Selanjutnya, kamu juga harus memahami proses atau workflow machine learning, yaitu:
Machine Learning: Sebuah Revolusi dalam Komputasi
Machine Learning (ML) adalah subbidang kecerdasan buatan (AI) yang memberikan kemampuan pada komputer untuk belajar dari data tanpa diprogram secara eksplisit. Istilah “belajar” dalam konteks ML bukan berarti menyerap pengetahuan melalui instruksi atau ceramah, melainkan mengacu pada proses ekstraksi pola dan wawasan secara otomatis dari kumpulan data yang besar.
Dengan memanfaatkan algoritma canggih, sistem ML dapat mengidentifikasi keterkaitan tersembunyi, memprediksi tren, dan membuat keputusan berdasarkan temuan yang diperoleh dari data. Kemampuan ini telah merevolusi berbagai industri, mulai dari perawatan kesehatan hingga keuangan, dengan mengotomatiskan tugas-tugas kompleks, meningkatkan efisiensi, dan menghasilkan wawasan yang berharga.
Praktik Tools Machine Learning
Ada beberapa tools machine learning yang bisa kamu pelajari, diantaranya:
Cara Kerja Machine Learning
Pada beberapa bagian sebelumnya kita telah mengenali beberapa algoritma machine learning. Agar lebih memahaminya sebaiknya kita mengetahui bagaimana cara kerja machine learning itu. Machine learning pada awalnya bekerja dengan cara belajar yang bertujuan untuk menghasilkan model tertentu. Model yang telah dibentuk itu nantinya akan menjadi informasi untuk pemecahan masalah baik dalam proses input maupun output. Kemudian model tersebut dapat memprediksi atau mengelompokkan data pada kedepannya.
Baca juga : Belajar Data Science: Pahami Penggunaan Machine Learning pada Python